Перейти к содержанию

Квантовый космос


Рекомендуемые сообщения

У нас уже есть отдельные темы про космос, про вселенную и атомы, но я бы хотел уделить внимание более узкой тематике - субатомному миру или квантовому космосу. Несмотря на сложность вопроса, даже без понимания матчасти интересно следить за открытиями в этой области, потому что она охватывает самый широкий спектр - кварки, гравитационные волны, черные дыры, суперструны,  и все прочее, что с первого взгляда воспринимается как страшное колдунство.

Больше всего интересно читать статьи и периодическую литературу и статьи, где подобные вопросы описываются не формулами, а более понятными образами.

В качестве примера хочу выложить интересную статью - рассуждение, что находится внутри нейтронной звезды?

Спойлер

Ядро нейтронной звезды находится в таком экстремальном состоянии, что физики не могут договориться о том, что происходит внутри неё. Но новый космический эксперимент — и несколько сталкивающихся нейтронных звёзд — должны показать, могут ли ломаться нейтроны


9c18f0c56279a7a2dd1080d3184d2a03.jpg

Предупреждения начали приходить рано утром 17 августа. Гравитационные волны, порождённые столкновением двух нейтронных звёзд — плотных ядер умерших звёзд — омывали Землю. Более 1000 физиков обсерватории aLIGO (Advanced Laser Interferometer Gravitational-Wave Observatory — лазерно-интерферометрическая гравитационно-волновая обсерватория) поспешили расшифровать вибрации пространства-времени, прокатившиеся по детекторам подобно долгому раскату грома. Тысячи астрономов боролись за право стать свидетелями послесвечения. Однако официально весь этот переполох держался в секрете. Нужно было собирать данные и писать научные работы. Внешний мир не должен был узнать об этом ещё два месяца.

Этот строгий запрет поставил Джоселин Рид и Катерино Чатциоаноу, двух членов коллаборации LIGO, в неловкое положение. Днём 17 числа они должны были вести конференцию, посвящённую вопросу о том, что происходит в невообразимых условиях внутренностей нейтронной звезды. А их темой как раз было то, как должно происходить слияние двух нейтронных звёзд. «Мы вышли на перерыв, сели и уставились друг на друга, — говорит Рид, профессор Калифорнийского университета в Фуллертоне. — Так как же мы это сделаем?»

Десятилетиями физики спорили о том, содержат или нет нейтронные звёзды в себе новые виды материи, появляющиеся, когда звезда ломает привычный мир протонов и нейтронов и создаёт новые взаимодействия между кварками или другими экзотическими частицами. Ответ на этот вопрос также пролил бы свет на астрономические загадки, окружающие сверхновые и появление тяжёлых элементов, вроде золота.

Кроме наблюдения за столкновениями при помощи LIGO, астрофизики разрабатывали творческие методы зондирования нейтронной звезды. Задача состоит в том, чтобы узнать какие-либо свойства её внутренних слоёв. Но сигнал, пришедший на LIGO, и подобные ему — испускаемые двумя нейтронными звёздами, обращающимися вокруг общего центра масс, притягивающимися друг к другу, и, наконец, врезающимися — предлагает совершенно новый подход к проблеме.

 

 

Странная материя


Нейтронная звезда — это сжатое ядро массивной звезды, очень плотные угли, оставшиеся после сверхновой. Её масса сравнима с солнечной, но сжата она до размеров города. Таким образом, нейтронные звёзды служат плотнейшими резервуарами материи во Вселенной — «последнее вещество на рубеже чёрной дыры», как говорит Марк Алфорд, физик из Вашингтонского университета в Сент-Луисе.

Пробурив такую звезду, мы бы приблизились к переднему краю науки. Пара сантиметров нормальных атомов — в основном, железо и кремний — лежат на поверхности, будто ярко-красное покрытие самых плотных сосательных конфет Вселенной. Затем атомы так сильно сжимаются, что теряют электроны, попадающие в общее море. Ещё глубже протоны начинают превращаться в нейтроны, находящиеся так близко, что они начинают перекрывать друг на друга.

694902e20036e73eea9e1ebf49b74cb1.jpg
Необыкновенное ядро нейтронной звезды. Физики пока ещё обсуждают, что именно находится внутри неё. Вот несколько основных идей.

 

 

Традиционная теория


Атмосфера — лёгкие элементы вроде водорода и гелия
Внешняя оболочка — ионы железа
Внутренняя оболочка — решётка ионов
Внешнее ядро — богатые нейтронами ионы в море свободных нейтронов

 

 

А что внутри?

 

  • В кварковом ядре нейтроны разваливаются на верхние и нижние кварки.
  • В гиперонном существуют нейтроны, состоящие из странных кварков.
  • В каонном — двухкварковые частицы с одним странным кварком.

Теоретики спорят о том, что происходит дальше, когда плотность в 2-3 раза начинает превышать плотность нормального атомного ядра. С точки зрения ядерной физики нейтронные звёзды могут просто состоять из протонов и нейтронов, то есть, нуклонов. «Всё можно объяснить вариациями нуклонов», — говорит Джеймс Латтимер, астрофизик из Университета в Стони-Брук.

Другие астрофизики считают иначе. Нуклоны — не элементарные частицы. Они состоят из трёх кварков [на самом деле, нет — прим. перев.]. Под невероятно сильным давлением кварки могут сформировать новое состояние — кварковую материю. «Нуклоны — это не бильярдные шары», — говорит Дэвид Блашке, физик из Вроцлавского университета в Польше. «Они больше похожи на вишенки. Их можно немного сжимать, но в какой-то момент вы их раздавите».

Но некоторые считают джем из кварков слишком простым вариантом. Теоретики давно думают о том, что внутри нейтронной звезды могут появляться слои из более странных частиц. Энергия сжимаемых вместе нейтронов может перейти в создание более тяжёлых частиц, содержащих не только верхние и нижние кварки, из которых состоят протоны и нейтроны, но и более тяжёлые и экзотические странные кварки.

К примеру, нейтроны могут уступать место гиперонам, трёхкварковым частицам, в которые входит по меньшей мере один странный кварк. В лабораторных экспериментах гипероны получались, но они практически сразу исчезали. Внутри нейтронных звёзд они могут стабильно существовать миллионы лет.

Как вариант, скрытые глубины нейтронных звёзд могут быть заполнены каонами — также состоящими из странных кварков — собирающимися в один кусок материи, находящийся в едином квантовом состоянии.

Но несколько десятилетий поле этих исследований было в тупике. Теоретики изобретали идеи по поводу того, что может происходить внутри нейтронных звёзд, но это окружение настолько экстремальное и малознакомое, что эксперименты на Земле не могут воссоздать нужных условий. В Брукхейвенской национальной лаборатории и в ЦЕРН физики сталкивают друг с другом тяжёлые ядра, например, золота и свинца. Это создаёт состояние материи, напоминающее суп частиц, в котором присутствуют свободные кварки, известное, как кварк-глюонная плазма. Но это вещество получается разреженным, не плотным, а его температура в миллиарды или триллионы градусов оказывается гораздо выше, чем у внутренностей нейтронной звезды, внутри которой царят относительно прохладные температуры в миллионы градусов.

Даже теория возрастом в несколько десятилетий, описывающая кварки и ядра, "квантовая хромодинамика" или КХД, не может дать ответов на эти вопросы. Вычисления, требующиеся для изучения КХД в относительно холодных и плотных средах до такой степени ужасно сложные, что их нельзя провести даже на компьютере. Исследователям остаётся довольствоваться чрезмерными упрощениями и разными трюками.

Единственный вариант — изучать сами нейтронные звёзды. К несчастью, они очень далеки, тусклы, и очень сложно измерить у них что-либо кроме самых основных свойств. Что ещё хуже, самая интересная физика происходит под их поверхностью. «Ситуация напоминает лабораторию, в которой происходит что-то удивительное, — говорит Алфорд, — в то время, как вы можете видеть только свет из её окон».

Но с новым поколением экспериментов теоретики могут, наконец, вскоре взглянуть на это как следует.

b2951064afbb78004605dc1ba8467add.jpg
41ad6176a68abb71efb0757ba2a2af5a.jpg
Инструмент NICER прямо перед запуском на МКС. Он отслеживает рентгеновское излучение нейтронных звёзд

 

 

Мягкое или твёрдое?


Что бы ни находилось в ядре нейтронной звезды — свободные кварки, конденсат каонов, гипероны или старые, добрые нуклоны — этот материал должен держаться против сокрушительной гравитации, превышающей солнечную. Иначе звезда схлопнулась бы в чёрную дыру. Но разные материалы могут сжиматься гравитацией в разной степени, что определяет максимально возможный вес звезды для заданного физического размера.

Астрономы, вынужденные оставаться снаружи, распутывают эту цепочку, пытаясь понять, из чего состоят нейтронные звёзды. А для этого очень хорошо было бы знать, насколько они мягкие или жёсткие на сжатие. Чтобы узнать это, астрономам необходимо измерить массы и радиусы различных нейтронных звёзд.

Среди нейтронных звёзд легче всего взвешивать пульсары: быстро вращающиеся нейтронные звёзды, радиолуч которых проходит сквозь Землю с каждым их поворотом. Порядка 10% из 2500 известных пульсаров относятся к двойным системам. В процессе движения этих пульсаров те их импульсы, что должны с равными промежутками достигать Земли, варьируются, выдавая движение пульсаров и их положение на орбитах. А зная орбиты, астрономы могут, воспользовавшись законами Кеплера и дополнительными поправками Эйнштейна и ОТО, находить массы этих парочек.

Пока что крупнейшим прорывом стало открытие неожиданно здоровых нейтронных звёзд. В 2010 году команда под руководством Скотта Рэнсома в Национальной радиоастрономической обсерватории Виргинии объявила, что измерила массу пульсара и нашла её равной двум солнечным — что гораздо больше ранее виденного. Некоторые даже сомневались в возможности существования таких нейтронных звёзд; это приводит к серьёзным последствиям для нашего представления о поведении ядер атомов. «Сейчас это одна из самых часто цитируемых работ по наблюдению за пульсарами, и всё благодаря физикам-ядерщикам», — говорит Рэнсом.

В соответствии с некоторыми моделями нейтронных звёзд, утверждающих, что гравитация должна их сильно сжимать, объект такой массы должен схлопнуться в чёрную дыру. Каонные конденсаты в таком случае пострадают, поскольку они достаточно мягкие, а также это не очень хорошо для некоторых вариантов квантовой материи и гиперонов, которые тоже сжались бы слишком сильно. Измерение было подтверждено открытием ещё одной нейтронной звезды, имеющей массу в две солнечных, в 2013 году.

56791821fe316cff38a4fda93e9b3663.jpg
Ферьял Озель, астрофизик из Аризонского университета, провела измерения, из которых следует, что в ядрах нейтронных звёзд содержится экзотическая материя

С радиусами всё немного сложнее. Астрофизики, например, Ферьял Озель из Аризонского университета, разработала различные приёмы для подсчёта физического размера нейтронных звёзд при помощи наблюдения за рентгеновскими лучами, исходящими с их поверхности. Вот один способ: можно измерить общее рентгеновское излучение, использовать его для оценки температуры поверхности, и затем рассчитать размер нейтронной звезды, способной излучать такие волны (внося поправки на то, как они изгибаются из-за гравитации). Также можно искать горячие точки на поверхности нейтронной звезды, постоянно появляющиеся и исчезающие из поля зрения. Сильное гравитационное поле звезды будет изменять световые импульсы в зависимости от этих горячих точек. Разобравшись в гравитационном поле звезды, можно воссоздать её массу и радиус.

Если верить этим расчётам Озел, получается, что хотя нейтронные звёзды и бывают довольно тяжёлыми, их размер находится в пределах 20-22 км в диаметре.

Принятие того факта, что нейтронные звёзды маленькие и массивные «загоняет вас в рамки, в хорошем смысле», — говорит Озел. Она говорит, что так должны выглядеть нейтронные звёзды, набитые взаимодействующими кварками, а у нейтронных звёзд, состоящих только из нуклонов, радиус должен был быть большим.

3ae72a245a0edd58cdcf786b24ce8437.jpg
Джеймс Латтимер, астрофизик из Университета в Стони-Брук, утверждает, что в ядрах нейтронных звёзд нейтроны остаются нетронутыми

Но у Латтимера, среди прочих критиков, есть сомнения по поводу предположений, используемых при рентгеновских измерениях — он считает, что они ошибочные. Он думает, что они могут неоправданно уменьшить радиус звёзд.

Обе соперничающие стороны считают, что их спор вскоре разрешится. В прошлом июне 11-я миссия SpaceX доставила на МКС ящик весом 372 кг, содержащий рентгеновский телескоп Найсер (англ. Neutron star Interior Composition Explorer, NICER). Найсер, в данное время собирающий данные, создан для определения размеров нейтронных звёзд через изучение горячих точек на их поверхности. Эксперимент должен выдать лучшие измерения радиусов нейтронных звёзд, считая пульсары, массы которых измерены.

«Мы все очень ждём результатов», — говорит Блашке. Точно измеренные масса и радиус даже одной нейтронной звезды сразу отметут множество вероятных теорий, описывающих их внутреннюю структуру, и оставит только те, что выдают определённое соотношение размера и веса.

А теперь к экспериментам подключился ещё и LIGO.

Сначала сигнал, который Рид обсуждала за кофе 17 августа, обрабатывали как результат столкновения чёрных дыр, а не нейтронных звёзд. И это имело смысл. Все предыдущие сигналы с LIGO были получены от чёрных дыр, более сговорчивых объектов с вычислительной точки зрения. Но в порождении этого сигнала участвовали более лёгкие объекты, а продолжался он гораздо дольше, чем происходит объединение чёрных дыр. «Совершенно очевидно, что это оказалась не такая система, на которых мы тренировались», — сказала Рид.

Когда две ЧД сближаются по спирали, они излучают орбитальную энергию в пространство время в виде гравитационных волны. Но в последнюю секунду нового 90-секундного сигнала, полученного LIGO, каждый объект испытал то, чего не испытывают ЧД: он деформировался. Пара объектов стала растягивать и сжимать материю друг друга, создавая волны, изымающие энергию их орбит. Это заставило их столкнуться быстрее, чем было бы в ином случае.

После нескольких месяцев неистовой работы с компьютерными симуляциями, группа Рид в LIGO выпустила своё первое измерение эффектов, оказываемых этими волнами на сигнал. Пока у команды есть только верхний предел — что означает, что эффект, оказываемый волнами, слаб или даже просто незаметен. А это значит, что нейтронные звёзды физически малы, и их материя удерживается вокруг центра в очень плотном состоянии, что препятствует её приливному растяжению. «Думаю, что первое измерение через гравитационные волны вроде бы подтверждает то, о чём говорили рентгеновские наблюдения», — говорит Рид. Но это ещё не конец. Она ожидает, что более сложное моделирование того же сигнала выдаст более точную оценку.

Найсер и LIGO предоставляют новые способы изучения нейтронных звёзд, и многие эксперты с оптимизмом ждут, что в следующие несколько лет появятся недвусмысленные ответы на вопрос сопротивления материала гравитации. Но теоретики, например, Альфорд, предупреждают, что простое измерение мягкости материи нейтронной звезды не даст полной информации о ней.

Возможно, другие признаки скажут больше. К примеру, идущие наблюдения за скоростью охлаждения нейтронных звёзд должны позволить астрофизикам рассуждать о присутствующих внутри них частицах и их способности излучать энергию. Или же изучение замедления их вращения может помочь определить вязкость их внутренностей.

Но, в любом случае, просто знать, в какой момент происходит фазовый переход материи и во что она превращается — это достойная задача, считает Альфорд. «Изучение свойств материи, существующей в разных условиях — это, в общем, и есть физика», — говорит он.

 

https://geektimes.ru/post/296231/

 

Так как следить за интересными новостями не всегда есть возможность, надеюсь на обмен интересными находками научных статей, которые расширят понимание устройства вселенной на двух столпах ее основания - квантовом мире и космосе.

Ссылка на комментарий
Поделиться на другие сайты

От меня сегодня будет не новость, но книжная рекомендация. Для тех, кто новичек в теме квантовой физики, я очень рекомендую вот эту книгу: http://www.fmllib.ru/nauchno-populyarnaya-literatura/6040/

 

На редкость хорошая научно-популярная книга, которая отлично вводит в курс дела, не боясь при этом формул и отдельных деталей, которые обычно пропускают. Помимо квантовой физики, там так же немало написано про научный метод в целом, что тоже очень хорошо.

 

У меня самого есть издание 3, это уже издание 4, думаю оно должно быть еще лучше.

Ссылка на комментарий
Поделиться на другие сайты

  • 1 month later...

еще интересная статься. написана она сложным языком о сложных вещах, но тем не менее посвящена одному из самых любопытных квантовых явлений - суперпозиции.

Спойлер

Квантовый эффект Зенона помог контролировать состояния кубитов

8a5cd327812255718206816e97ccaa2a.jpg

 

S. Hacohen-Gourgy et al. / Phys. Rev. Lett.

Группа американских ученых экспериментально показала, что с помощью квантового эффекта Зенона можно контролировать состояние трансмонных кубитов, медленно изменяя фазу оператора наблюдения. Статья опубликована в Physical Review Letters.

Когда наблюдатель измеряет свойства квантовой системы, он неизбежно взаимодействует с ней, что приводит к разрушению ее квантового состояния. Вообще говоря, после измерения система вовсе не обязана находиться в том же состоянии, что и до него. Известным примером этого свойства квантовых систем является кот Шрёдингера, который после измерения (открытия коробки) переходит либо в состояние «жив», либо в состояние «мертв», хотя изначально он находился в суперпозиции обоих состояний. Конечно, иногда изменением системы можно пренебречь, но в целом этот факт всегда нужно держать в уме.

Интересным проявлением этого свойства квантового мира является квантовый эффект Зенона. Заключается эффект в том, что чем чаще мы измеряем состояние квантовой системы, тем дольше оказывается время ее жизни; в предельном случае непрерывных измерений система не распадется вовсе. Все это напоминает стрелу из известной апории Зенона, которая покоится в каждый момент времени и, следовательно, стоит на месте. Говоря более строго, наблюдения подавляют эволюцию системы, заставляя ее оставаться в том состоянии, в котором мы ее «поймали». Этот эффект хорошо изучен теоретически и экспериментально проверен для многих квантовых систем. Подробнее прочитать о квантовом эффекте Зенона можно, например, в этой статье Ростислава Ведринского.

В новой статье группа ученых под руководством Шея Хакоена-Гурги (Shay Hacohen-Gourgy) экспериментально показала, что квантовый эффект Зенона можно использовать не только для подавления эволюции системы, но и для управления ее состоянием. Для этого нужно немного изменять фазу оператора наблюдения в ходе эксперимента. В качестве исследуемой системы они взяли трансмонный кубит (один из типов сверхпроводящего кубита), помещенный в трехмерную сверхпроводящую полость. Эволюция подобной системы описывается контурной квантовой электродинамикой (circuit-QED), определить состояния кубита можно, измеряя частоту колебаний поля в полости. Кроме того, физики приложили к системе возмущение с частотой, совпадающей с собственной частотой колебаний кубита, и получили эффективный кубит с новыми собственными состояниями. Именно для этого эффективного кубита они показали возможность изменять состояние с помощью наблюдений.

 

62ae9a8fbbcc2138ecd35b44a03f23eb.png

Схема эксперимента. Справа показаны частоты возмущений, которые прикладывались к системе

S. Hacohen-Gourgy et al. / Phys. Rev. Lett.

Поделиться
 
  •  
  •  
  •  
  •  
  •  
  •  
  •  

Затем экспериментаторы провели серию опытов, в которых они с разной частотой измеряли состояния кубита, медленно изменяя фазу оператора наблюдения. Полученные данные они откладывали на сфере Блоха и сравнивали с теоретическими предсказаниями. Грубо говоря, сфера Блоха отражает, насколько состояние системы совпадает с одним из двух выбранных «чистых» состояний (например, состояния «спин вверх» и «спин вниз» для электрона). Оказалось, что в целом эксперимент хорошо совпадает с теорией, и состояние кубита медленно изменяется («перетаскивается») вместе с фазой оператора наблюдения, оставаясь при этом «чистым» состоянием (которому отвечает точка на поверхности сферы). Тем не менее, иногда система совершает скачок и переходит в диаметрально противоположную точку на сфере Блоха, то есть в ортогональное состояние. После «перескакивания» состояние продолжает поворачиваться, оставаясь чистым.

 

f9f9c4e2b1dc02c66858f9940a518034.png

Слева — эволюция состояния со временем в зависимости от частоты измерений; точки отвечают экспериментальным данным, линии — теории. Справа — эволюция системы со временем для периода изменений около пяти микросекунд; можно увидеть, как система «перескакивает» между квантовыми состояниями

S. Hacohen-Gourgy et al. / Phys. Rev. Lett.

Поделиться
 
  •  
  •  
  •  
  •  
  •  
  •  
  •  
140d34ed0201b3b96526917f5a84089e.png

Чистота состояний в ходе «перетаскивания» с зависимости от величины порога отбора данных

S. Hacohen-Gourgy et al. / Phys. Rev. Lett.

Под

Кроме того, ученые более подробно исследовали, как система «перескакивает» между ортогональными состояниями. Оказалось, что скачок происходит немного позже, чем предсказывает теория. При этом траектория системы проходит не через центр сферы Блоха, а выгибается в сторону, противоположную направлению «перетаскивания».

 

cac6ddd62183eacccdc1e7681ff88743.png

Эволюция состояний кубита со временем для двух различных «частот перетаскивания». Белая линия — экспериментальное положение «оси перескока», красная — теоретическое

S. Hacohen-Gourgy et al. / Phys. Rev. Lett.

Поделиться
  
  •  

  •  

Авторы статьи считают, что изученный ими эффект поможет регистрировать ошибки, возникающие в кубитах квантовых компьютеров во время вычислений, поскольку он позволяет не только изменять, но и отслеживать состояния кубита.

Ранее мы писали, как две группы ученых экспериментально доказали, что квантовый эффект Зенона действительно проявляется при измерении состояний атомов сильно охлажденного газа рубидия-87. Кроме того, осенью этого года исследователи продемонстрировали эффект, напоминающий квантовый эффект Зенона: им удавалось контролировать поток тепла, изменяя частоту наблюдений за термоэлектронным наноразмерным прибором. В том числе — направлять его от холодного тела к горячему вопреки второму закону термодинамики.

Дмитрий Трунин

https://nplus1.ru/news/2018/01/15/zeno-qubit

 

более всего интересен тезис в конце. кубиты это одно, но взаимосвязь температуры объекта от частоты наблюдения уже вплотную подступает к влиянию квантовой суперпозиции на макромир. как будто бы температура за окном менялась в зависимости от того, как часто мы выставляли термометр наружу.

ссылка на эксперимент из последнего абзаца:

https://nplus1.ru/news/2017/10/10/quantum-current

Изменено пользователем Gabriel
Ссылка на комментарий
Поделиться на другие сайты

2 часа назад, Gabriel сказал:

более всего интересен тезис в конце. кубиты это одно, но взаимосвязь температуры объекта от частоты наблюдения уже вплотную подступает к влиянию квантовой суперпозиции на макромир. как будто бы температура за окном менялась в зависимости от того, как часто мы выставляли термометр наружу.


Мое чисто интуитивное мнение заключается в том, что квантовые законы и явления однозначно влияют на макромир, и весьма нетривиальным образом.

Ссылка на комментарий
Поделиться на другие сайты

Я тоже так думаю, даже не сомневаюсь в этом. И дело не в том, что все мы состоим из адронов, живущих по законам квантового мира, и не в прикладном применении полученых знаний, вроде суперпроводников и квантовых компьютеров. Просто я не сомневаюсь, что вселенная живет совсем не так, как нам кажется. 

Например, раньше думалось, что вселенная расширяетя, теперь же оказалось, что расширяется пространство в каждой точке его нахождения. Словно пена. 

Или так называемая темная материя и энергия, чья суммарная доля составляет 90% вселенной. Конечно, это может быть колосальная масса частиц подобных нейтрино, которые крайне сложно регистрировать, но сейчас ученые склоняются к существованию сверхлегких частиц с нулевым зарядом, находящиеся в состоянии суперсимметрии (даже красивое название им придумали - нейтралино). Просто тут уже один шаг до теории, что львиная доля вселенной находится в суперпозиции и пока нет еще такого тензора оператора, который наблюдением (измерением) может задать ее значение. То есть вселенная еще не достроена на фундаментальном уровне, если можно так выразиться. Хотя это конечно уже вотчина научной фантастики, но кто знает, кто знает.

Изменено пользователем Gabriel
Ссылка на комментарий
Поделиться на другие сайты

  • 2 weeks later...

пока без открытий, просто гипотезы и любопытное чтиво

Может ли Вселенная возникнуть из... ничего?

Спойлер

Флуктуации вакуума могут послужить причиной образования виртуальных протовселенных, которые при определенных условиях способны перейти из виртуального состояния в реальное.

 

Физики долгие годы пытаются построить квантовую теорию гравитации - пока, к сожалению, безуспешно. Практически все они согласны, что такая теория должна объединить эйнштейновскую релятивистскую теорию тяготения с квантовой механикой, а это очень и очень непростая задача.

 

Квантовая механика при всех своих парадоксах все же описывает свойства объектов, существующих в неискривленном ньютоновском пространстве. Будущая теория гравитации должна распространить вероятностные квантовомеханические законы на свойства самого пространства (точнее, пространства-времени), деформированного в соответствии с уравнениями общей теории относительности. Как это сделать с помощью строгих математических выкладок, никто еще толком не знает.

 

Холодное рождение

Однако пути к подобному объединению можно обдумать на качественном уровне, и здесь появляются весьма интересные перспективы. Одну из них рассмотрел известный космолог, профессор Аризонского университета Лоуренс Краусс в своей недавно изданной книге «A Universe From Nothing» («Вселенная из ничего»). Его гипотеза выглядит фантастической, но отнюдь не противоречит установленным законам физики.

Считается, что наша Вселенная возникла из очень горячего начального состояния с температурой порядка 1032 кельвинов. Однако возможно представить и холодное рождение вселенных из чистого вакуума — точнее, из его квантовых флуктуаций. Хорошо известно, что такие флуктуации порождают великое множество виртуальных частиц, буквально возникших из небытия и впоследствии бесследно исчезнувших. Согласно Крауссу, вакуумные флуктуации в принципе способны давать начало столь же эфемерным протовселенным, которые при определенных условиях переходят из виртуального состояния в реальное.

 

Вселенная без энергии

Что для этого нужно? Первое и главное условие — зародыш будущей вселенной должен иметь нулевую полную энергию. В этом случае он не только не обречен на практически мгновенное исчезновение, но, напротив, может просуществовать сколь угодно долго. Это связано с тем, что, согласно квантовой механике, произведение неопределенности величины энергии объекта на неопределенность его времени жизни не должно быть меньше конечной величины — постоянной Планка.

 

Разделение фундаментальных взаимодействий в нашей ранней Вселенной носило характер фазового перехода. При очень высоких температурах фундаментальные взаимодействия были объединены, но при остывании ниже критической температуры разделения не произошло (это можно сравнить с переохлаждением воды). В этот момент энергия скалярного поля, связанного с объединением, превысила температуру Вселенной, что наделило поле отрицательным давлением и послужило причиной космологической инфляции. Вселенная стала очень быстро расширяться, и в момент нарушения симметрии (при температуре около 1028 К) ее размеры увеличились в 1050 раз. В этот момент исчезло и скалярное поле, связанное с объединением взаимодействий, а его энергия трансформировалась в дальнейшее расширение Вселенной.

 

Коль скоро энергия объекта строго равна нулю, она известна без всяких неопределенностей, и потому время его жизни может быть бесконечно большим. Именно благодаря этому эффекту два заряженных тела, расположенных на очень больших расстояниях, притягиваются или отталкиваются друг от друга. Они взаимодействуют благодаря обмену виртуальными фотонами, которые, в силу своей нулевой массы, распространяются на любые дистанции. Напротив, калибровочные векторные бозоны, переносящие слабые взаимодействия, в силу большой массы существуют лишь около 10-25 секунды, вследствие чего эти взаимодействия обладают очень малым радиусом.

Что же за вселенная, пусть и эмбриональная, с нулевой энергией? Как объяснил «Популярной механике» профессор Краусс, в этом нет ничего мистического: «Энергия такой вселенной складывается из положительной энергии частиц и излучений (и, возможно, также скалярных вакуумных полей) и отрицательной потенциальной энергии тяготения. Их сумма может быть равна нулю — математика это допускает. Однако очень важно, что такой энергетический баланс возможен лишь в замкнутых мирах, пространство которых имеет положительную кривизну. Плоские и тем более открытые вселенные таким свойством не обладают».

 

4abaeb6b9c9d266c6d2e955545a2e27f.jpg

Фазовый переход происходил в эволюции Вселенной три раза: при температуре 1028 K (распалось Великое объединение взаимодействий), 1015 К (распад электрослабого взаимодействия) и 1012 K (кварки стали объединяться в адроны).

 

Чудеса инфляции

Что произойдет, если квантовые флуктуации вакуума породят виртуальную вселенную с нулевой энергией, которая в силу квантовых случайностей получила какое-то время для жизни и эволюции? Это зависит от ее состава. Если пространство вселенной заполнено веществом и излучением, она сначала будет расширяться, достигнет максимального размера и схлопнется в гравитационном коллапсе, просуществовав лишь ничтожную долю секунды. Другое дело, если в пространстве имеются скалярные поля, способные запустить процесс инфляционного расширения. Существуют сценарии, в которых это расширение не только предотвращает гравитационный коллапс «пузырьковой» вселенной, но и превращает ее в почти плоский и безграничный мир. Тем самым неизмеримо вырастает и время ее жизни — практически до бесконечности. Таким образом, крошечная виртуальная вселенная становится вполне реальной — огромной и долгоживущей. Даже если ее возраст конечен, он вполне может намного превысить нынешний возраст нашей Вселенной. Поэтому там могут появиться звезды и звездные скопления, планеты и даже, чем черт не шутит, разумная жизнь. Полноценное мироздание, возникшее буквально из ничего — вот на какие чудеса способна инфляция!

 

Статья «Миры из пустоты» опубликована в журнале «Популярная механика» (№7, Июль 2012).

 

Ссылка на комментарий
Поделиться на другие сайты

  • 2 months later...
  • 1 month later...

это любопытно

 

Физики измерили давление внутри протона

Спойлер

Ученые из Лаборатории Джефферсона «просканировали» внутренности протона с помощью глубоко-виртуального комптоновского рассеяния, рассчитали на основании этих данных функцию распределения партонов и один из трех гравитационных формфакторов, а также оценили давление внутри частицы. Оказалось, что давление внутри протона достигает значений порядка 1035 паскалей, что превышает давление внутри самого плотного объекта во Вселенной — нейтронной звезды. Статья опубликована в Nature.

Протоны входят в состав атомного ядра и образуют бо́льшую часть привычной для нас материи, однако сами по себе элементарными частицами не являются. На самом деле каждый протон состоит из более мелких частиц (кварков), связанных друг с другом переносчиками сильного взаимодействия (глюонами). При больших энергиях и кварки, и глюоны ведут себя как отдельные частицы (партоны) — другими словами, если вы разгоните протон до околосветовой скорости и столкнете его с электроном, вы обнаружите, что электрон не рассеивается на протоне как на одной «целой» частице, но взаимодействует с каждым из партонов по отдельности.

Тем не менее, кварки не могут существовать в качестве свободных частиц, но обязательно связываются в адроны (к числу которых относится и протон) из-за конфайнмента. Грубо говоря, кварки внутри адрона можно представлять себе как шарики, связанные друг с другом струнами (или трубочками), в которых сосредоточен основной поток сильного поля. Когда кварки отдаляются друг от друга достаточно далеко, струна рвется, и в месте ее разрыва образуется пара кварк-антикварк, которые сразу же связываются с исходными частицами. С другой стороны, чем ближе кварки находятся друг к другу, тем слабее они взаимодействуют из-за асимптотической свободы. Это свойство отличает сильное взаимодействие от всех остальных типов взаимодействий, которые при сближении только усиливаются.

Чтобы «просканировать» внутреннюю структуру протона, физики сталкивают его с другими частицами, разогнанными до больших скоростей, измеряют углы их разлета и импульсы, а также сечение взаимодействия. Удобнее всего использовать для этого глубоко-виртуальное комптоновское рассеяние (deeply virtual Compton scattering, DVCS). Грубо говоря, обычное комптоновское рассеяние — это просто отражение света, то есть упругое рассеяние фотонов на частице. Упругость процесса означает, что суммарная кинетическая энергия участвующих в нем частиц сохраняется. В таком процессе протон ведет себя «как целое», поскольку энергии фотона не хватает, чтобы проникнуть в его внутренности. Однако в DVCS вместо обычного фотона используется виртуальный фотон, который рождается при взаимодействии налетающего на протон высокоэнергетического электрона. Энергия такого фотона получается очень большой, и при рассеянии он «чувствует» отдельные кварки, а потом превращается в обычный фотон. Происходит такой процесс нечасто, однако при большом числе столкновений нужную статистику вполне можно набрать. Ранее физики уже использовали DVCS, чтобы исследовать внутреннюю структуру протона.

 

514e6f41de87bc8aec4818e1a862850d.png

Глубоко-виртуальное рассеяние фотонов на протоне

В новой статье группа ученых из Лаборатории Томаса Джефферсона под руководством Волкера Буркерта (Volker Burkert) определила с помощью DVCS один из трех гравитационных формфакторов протона и рассчитала на его основе зависимость давления от радиуса внутри частицы. Формфактор — это функция, которая описывает взаимодействие протяженной (не точечной) частицы с другими частицами и полями; соответственно, гравитационные формфакторы связаны с механическими свойствами протона. Единственный способ напрямую измерить эти функции — рассеять на протоне гравитон. К сожалению, существование гравитонов экспериментально не подтверждено, поэтому физикам приходится использовать непрямые методы, выводя механические свойства протона из его внутренней структуры — как, в частности, поступили авторы новой работы.

 

Чтобы извлечь из данных DVCS зависимость давления от радиуса внутри протона, физики использовали следующую многоступенчатую схему. Во-первых, они связали обобщенное партонное распределение внутри протона с гравитационными формфакторами с помощью преобразования Меллина. Во-вторых, физики определили из данных DVCS комплексный комптоновский формфактор, связанный с такими наблюдаемыми величинами, как сечение рассеяния и асимметрия пучка. В-третьих, ученые выделили общую часть действительной и комплексной частей комптоновского формфактора и разложили ее по полиномам Гегенбауэра, которые являются обобщениями полиномов Лежандра и позволяют вывести гиперсферические функции, аналогичные сферическим функциям в трехмерном пространстве. Это позволило исследователям определить гравитационный формфактор d1(t), описывающий сдвиговые силы и давление внутри протона. Наконец, физики учли тот факт, что формфактор d1(t) связан с радиальным распределением давления p(r) с помощью бесселевого сферического интеграла, и рассчитали зависимость p(r).

В результате ученые обнаружили, что вблизи от центра протона давление положительно, то есть должно расталкивать кварки, однако при увеличении расстояния становится отрицательным и начинает связывать частицы. При этом пик отталкивания наступает на расстоянии около 0,6 фемтометров (6×10−13 метров) от центра протона и достигает величины порядка 1035 паскалей, то есть превышает давление внутри наиболее плотно упакованного объекта во Вселенной — нейтронной звезды. Минимальное значение давление принимает на расстоянии около 0,8 фемтометров.

 

8fa42a1494e8b31cc9f0d969d5e4e75a.png

Рассчитанная физиками зависимость давления от радиуса внутри протона (черная линия) и ее погрешности. Зеленая область отвечает погрешностям, полученным в данной работе, синяя область — погрешностями, рассчитанным при использовании только данных предыдущих экспериментов по DVCS, красная — погрешность, которую можно будет достигнуть после проведения запланированных экспериментов

V. Burkert et al. / Nature

Авторы статьи считают, что их работа поможет лучше разобраться во внутренней структуре протона и понять конфайнмент, а также объяснить, почему свободный протон не распадается на другие элементарные частицы, как это происходит с нейтроном и другими адронами.

 

Несмотря на то, что в следующем году истории изучения протона исполнится сто лет (протон был открыт в 1919 году Эрнестом Резерфордом), физики до сих пор не могут понять некоторые его свойства. В частности, в июне 2010 года физики столкнулись с так называемой «загадкой радиуса протона» — расхождением в результатах экспериментов по определению зарядового радиуса протона, в которых участвовали обычные атомы или мезоатомы. Это расхождение достигает четырех процентов, что ставит под сомнение «бесконечную точность» квантовой электродинамики. Впрочем, некоторые ученые считают, что его можно списать на какие-нибудь неучтенные эффекты, искажающие результаты наблюдений, — например, на квантовую интерференцию.

Дмитрий Трунин

https://nplus1.ru/news/2018/05/16/DVCS-pressure

 

Ссылка на комментарий
Поделиться на другие сайты

  • 3 months later...

попалась статья, которая очень доступно, прямо таки максимально понятным и простым языком описывает, что же такое 4-, 5-, 6- и более мерные пространства и как их вообще вообразить нашим двумерным сознанием в трехмерном мире, и что же такое эти загадочные и зловещие суперструны. научность темы довольно поверхностная, но все равно интересно.

10 измерений реальности: просто и понятно о теории струн

Спойлер
Считаем от трёх до десяти
 
 

Самая большая проблема у теоретических физиков — как объединить все фундаментальные взаимодействия (гравитационное, электромагнитное, слабое и сильное) в единую теорию. Теория суперструн как раз претендует на роль Теории Всего.

Но оказалось, что самое удобное количество измерений, необходимое для работы этой теории — целых десять (девять из которых — пространственные, и одно — временное)! Если измерений больше или меньше, математические уравнения дают иррациональные результаты, уходящие в бесконечность — сингулярность.

Следующий этап развития теории суперструн — М-теория — насчитала уже одиннадцать размерностей. А ещё один её вариант — F-теория — все двенадцать. И это вовсе не усложнение. F-теория описывает 12-мерное пространство более простыми уравнениями, чем М-теория — 11-мерное.

original_59185e2b3f650251e5e9be258b95d80

 

Конечно, теоретическая физика не зря называется теоретической. Все её достижения существуют пока что только на бумаге. Так, чтобы объяснить почему же мы можем перемещаться только в трёхмерном пространстве, учёные заговорили о том, как несчастным остальным измерениям пришлось скукожиться в компактные сферы на квантовом уровне. Если быть точными, то не в сферы, а в пространства Калаби-Яу. Это такие трёхмерные фигурки, внутри которых свой собственный мир с собственной размерностью. Двухмерная проекция подобный многообразий выглядит приблизительно так:

original_475789e5aa49db02ca2af1a1f6fc5185__econet_ru.jpg

Таких фигурок известно более 470 миллионов. Которая из них соответствует нашей действительности, в данный момент вычисляется. Нелегко это — быть теоретическим физиком.

Да, это кажется немного притянутым за уши. Но может, именно этим и объясняется, почему квантовый мир так отличается от воспринимаемого нами.

Точка, точка, запятая

Начнём с начала. Нулевое измерение — это точка. У неё нет размеров. Двигаться некуда, никаких координат для обозначения местонахождения в таком измерении не нужно.

Поставим рядом с первой точкой вторую и проведём через них линию. Вот вам и первое измерение. У одномерного объекта есть размер — длина, но нет ни ширины, ни глубины. Движение в рамках одномерного пространства очень ограничено, ведь возникшее на пути препятствие не обойдёшь. Чтобы определить местонахождение на этом отрезке, понадобится всего одна координата.

Поставим рядом с отрезком точку. Чтобы уместить оба эти объекта, нам потребуется уже двумерное пространство, обладающее длиной и шириной, то есть, площадью, однако без глубины, то есть, объёма. Расположение любой точки на этом поле определяется двумя координатами.

Третье измерение возникает, когда мы добавляем к этой система третью ось координат. Нам, жителям трёхмерной вселенной, очень легко это представить.

Попробуем вообразить, как видят мир жители двухмерного пространства. Например, вот эти два человечка:

 

original_11639a393c25e5b71c736ae42009c330__econet_ru.jpg

Каждый из них увидит своего товарища вот таким:

 

original_afadd867363dc34ad064798ede1b4c33__econet_ru.jpg

А при вот таком раскладе:

 

original_5c110d92cdf01314b3e961df22364cd3__econet_ru.jpg

Наши герои увидят друг друга такими:

 

original_d106951a72036076196890bbad2f3805__econet_ru.jpg

Именно смена точки обзора позволяет нашим героям судить друг о друге как о двумерных объектах, а не одномерных отрезках.

А теперь представим, что некий объёмный объект движется в третьем измерении, которое пересекает этот двумерный мир. Для стороннего наблюдателя, это движение выразится в смене двумерных проекций объекта на плоскости, как у брокколи в аппарате МРТ:

 

original_mri3__econet_ru.gif

Но для обитателя нашей Флатландии такая картинка непостижима! Он не в состоянии даже представить её себе. Для него каждая из двумерных проекций будет видеться одномерным отрезком с загадочно переменчивой длиной, возникающим в непредсказуемом месте и также непредсказуемо исчезающим. Попытки просчитать длину и место возникновения таких объектов с помощью законов физики двумерного пространства, обречены на провал.

Мы, обитатели трёхмерного мира, видим всё двумерным. Только перемещение предмета в пространстве позволяет нам почувствовать его объём. Любой многомерный объект мы увидим также двумерным, но он будет удивительным образом меняться в зависимости от нашего с ним взаиморасположения или времени.

С этой точки зрения интересно думать, например, про гравитацию. Все, наверное, видели, подобные картинки:

original_92a916e2eeddb5230d3a02a8eec36218__econet_ru.png

На них принято изображать, как гравитация искривляет пространство-время. Искривляет... куда? Точно ни в одно из знакомых нам измерений. А квантовое туннелирование, то есть, способность частицы исчезать в одном месте и появляться совсем в другом, причём за препятствием, сквозь которое в наших реалиях она не смогла бы проникнуть, не проделав в нём дыру? А чёрные дыры? А что, если все эти и другие загадки современной науки объясняются тем, что геометрия пространства совсем не такая, какой мы привыкли её воспринимать?

Тикают часики

Время добавляет к нашей Вселенной ещё одну координату. Для того, чтобы вечеринка состоялась, нужно знать не только в каком баре она произойдёт, но и точное время этого события.

Исходя из нашего восприятия, время — это не столько прямая, как луч. То есть, у него есть отправная точка, а движение осуществляется только в одном направлении — из прошлого в будущее. Причём реально только настоящее. Ни прошлое, ни будущее не существуют, как не существуют завтраки и ужины с точки зрения офисного клерка в обеденный перерыв.

Но теория относительности с этим не согласна. С её точки зрения, время — это полноценное измерение. Все события, которые существовали, существуют и будут существовать, одинаково реальны, как реален морской пляж, независимо от того, где именно мечты о шуме прибоя захватили нас врасплох. Наше восприятие — это всего лишь что-то вроде прожектора, который освещает на прямой времени какой-то отрезок. Человечество в его четвёртом измерении выглядит приблизительно так:

 

original_9850dbebd740066a6f458beda0a40b0b__econet_ru.png

Но мы видим только проекцию, срез этого измерения в каждый отдельный момент времени. Да-да, как брокколи в аппарате МРТ.

До сих пор все теории работали с большим количеством пространственных измерений, а временное всегда было единственным. Но почему пространство допускает появление множественных размерностей для пространства, но время только одно? Пока учёные не смогут ответить на этот вопрос, гипотеза о двух или более временных пространствах будет казаться очень привлекательной всем философам и фантастам. Да и физикам, чего уж там. Скажем, американский астрофизик Ицхак Барс корнем всех бед с Теорией Всего видит как раз упущенное из виду второе временное измерение. В качестве умственного упражнения, попробуем представить себе мир с двумя временами.

Каждое измерение существует отдельно. Это выражается в том, что если мы меняем координаты объекта в одной размерности, координаты в других могут оставаться неизменными. Так, если вы движетесь по одной временной оси, которая пересекает другую под прямым углом, то в точке пересечения время вокруг остановится. На практике это будет выглядеть приблизительно так:

original_45be9da08a7092c12efc78cf84df52f5__econet_ru.jpg

Всё, что Нео нужно было сделать — это разместить свою одномерную временную ось перпендикулярно временной оси пуль. Сущий пустяк, согласитесь. На самом деле всё намного сложнее.

Точное время во вселенной с двумя временными измерениями будет определяться двумя значениями. Слабо представить себе двумерное событие? То есть, такое, которое протяжённо одновременно по двум временным осям? Вполне вероятно, что в таком мире потребуются специалисты по составлению карты времени, как картографы составляют карты двухмерной поверхности земного шара.

Что ещё отличает двумерное пространство от одномерного? Возможность обходить препятствие, например. Это уже совсем за границами нашего разума. Житель одномерного мира не может представить себе как это — завернуть за угол. Да и что это такое — угол во времени? Кроме того, в двумерном пространстве можно путешествовать вперёд, назад, да хоть по диагонали. Я без понятия как это — пройти через время по диагонали. Я уж не говорю о том, что время лежит в основе многих физических законов, и как изменится физика Вселенной с появлением ещё одного временного измерения, невозможно представить. Но размышлять об этом так увлекательно!

Очень большая энциклопедия

Другие измерения ещё не открыты, и существуют только в математических моделях. Но можно попробовать представить их так.

Как мы выяснили раньше, мы видим трёхмерную проекцию четвёртого (временного) измерения Вселенной. Другими словами, каждый момент существования нашего мира — это точка (аналогично нулевому измерению) на отрезке времени от Большого взрыва до Конца Света.

Те из вас, кто читал про перемещения во времени, знают какую важную роль в них играет искривление пространственно-временного континуума. Вот это и есть пятое измерение — именно в нём «сгибается» четырёхмерное пространство-время, чтобы сблизить две какие-то точки на этой прямой. Без этого путешествие между этими точками было бы слишком длительным, или вообще невозможным. Грубо говоря, пятое измерение аналогично второму — оно перемещает «одномерную» линию пространства-времени в «двумерную» плоскость со всеми вытекающими в виде возможности завернуть за угол.

Наши особо философско-настроенные читатели чуть ранее, наверное, задумались о возможности свободной воли в условиях, где будущее уже существует, но пока ещё не известно. Наука на этот вопрос отвечает так: вероятности. Будущее — это не палка, а целый веник из возможных вариантов развития событий. Какой из них осуществится — узнаем когда доберёмся.

Каждая из вероятностей существует в виде «одномерного» отрезка на «плоскости» пятого измерения. Как быстрее всего перескочить из одного отрезка на другой? Правильно — согнуть эту плоскость, как лист бумаги. Куда согнуть? И снова правильно — в шестом измерении, которое придаёт всей этой сложной структуре «объём». И, таким образом, делает её, подобно трёхмерному пространству, «законченной», новой точкой.

Седьмое измерение — это новая прямая, которая состоит из шестимерных «точек». Что представляет собой какая-либо другая точка на этой прямой? Весь бесконечный набор вариантов развития событий в другой вселенной, образованной не в результате Большого Взрыва, а в других условиях, и действующей по другим законам. То есть, седьмое измерение — это бусы из параллельных миров. Восьмое измерение собирает эти «прямые» в одну «плоскость». А девятое можно сравнить с книгой, которая уместила в себя все «листы» восьмого измерения. Это совокупность всех историй всех вселенных со всеми законами физики и всеми начальными условиями. Снова точка.

Тут мы упираемся в предел. Чтобы представить себе десятое измерение, нам нужна прямая. А какая может быть другая точка на этой прямой, если девятое измерение уже покрывает всё, что только можно себе представить, и даже то, что и представить невозможно? Получается, девятое измерение — это не очередная отправная точка, а финальная — для нашей фантазии, во всяком случае.

Теория струн утверждает, что именно в десятом измерении совершают свои колебания струны — базовые частицы, из которых состоит всё. Если десятое измерение содержит себе все вселенные и все возможности, то струны существуют везде и всё время. В смысле, каждая струна существует и в нашей вселенной, и любой другой. В любой момент времени. Сразу. Круто, да?  

опубликовано econet.ru

 

Ссылка на комментарий
Поделиться на другие сайты

В 06.09.2018 в 00:37, Gabriel сказал:

10 измерений реальности: просто и понятно о теории струн

  Показать контент
Считаем от трёх до десяти
 
 

Самая большая проблема у теоретических физиков — как объединить все фундаментальные взаимодействия (гравитационное, электромагнитное, слабое и сильное) в единую теорию. Теория суперструн как раз претендует на роль Теории Всего.

Но оказалось, что самое удобное количество измерений, необходимое для работы этой теории — целых десять (девять из которых — пространственные, и одно — временное)! Если измерений больше или меньше, математические уравнения дают иррациональные результаты, уходящие в бесконечность — сингулярность.

Следующий этап развития теории суперструн — М-теория — насчитала уже одиннадцать размерностей. А ещё один её вариант — F-теория — все двенадцать. И это вовсе не усложнение. F-теория описывает 12-мерное пространство более простыми уравнениями, чем М-теория — 11-мерное.

original_59185e2b3f650251e5e9be258b95d80

 

Конечно, теоретическая физика не зря называется теоретической. Все её достижения существуют пока что только на бумаге. Так, чтобы объяснить почему же мы можем перемещаться только в трёхмерном пространстве, учёные заговорили о том, как несчастным остальным измерениям пришлось скукожиться в компактные сферы на квантовом уровне. Если быть точными, то не в сферы, а в пространства Калаби-Яу. Это такие трёхмерные фигурки, внутри которых свой собственный мир с собственной размерностью. Двухмерная проекция подобный многообразий выглядит приблизительно так:

original_475789e5aa49db02ca2af1a1f6fc5185__econet_ru.jpg

 

Таких фигурок известно более 470 миллионов. Которая из них соответствует нашей действительности, в данный момент вычисляется. Нелегко это — быть теоретическим физиком.

Да, это кажется немного притянутым за уши. Но может, именно этим и объясняется, почему квантовый мир так отличается от воспринимаемого нами.

Точка, точка, запятая

Начнём с начала. Нулевое измерение — это точка. У неё нет размеров. Двигаться некуда, никаких координат для обозначения местонахождения в таком измерении не нужно.

Поставим рядом с первой точкой вторую и проведём через них линию. Вот вам и первое измерение. У одномерного объекта есть размер — длина, но нет ни ширины, ни глубины. Движение в рамках одномерного пространства очень ограничено, ведь возникшее на пути препятствие не обойдёшь. Чтобы определить местонахождение на этом отрезке, понадобится всего одна координата.

Поставим рядом с отрезком точку. Чтобы уместить оба эти объекта, нам потребуется уже двумерное пространство, обладающее длиной и шириной, то есть, площадью, однако без глубины, то есть, объёма. Расположение любой точки на этом поле определяется двумя координатами.

Третье измерение возникает, когда мы добавляем к этой система третью ось координат. Нам, жителям трёхмерной вселенной, очень легко это представить.

Попробуем вообразить, как видят мир жители двухмерного пространства. Например, вот эти два человечка:

 

original_11639a393c25e5b71c736ae42009c330__econet_ru.jpg

 

Каждый из них увидит своего товарища вот таким:

 

original_afadd867363dc34ad064798ede1b4c33__econet_ru.jpg

 

А при вот таком раскладе:

 

original_5c110d92cdf01314b3e961df22364cd3__econet_ru.jpg

 

Наши герои увидят друг друга такими:

 

original_d106951a72036076196890bbad2f3805__econet_ru.jpg

 

Именно смена точки обзора позволяет нашим героям судить друг о друге как о двумерных объектах, а не одномерных отрезках.

А теперь представим, что некий объёмный объект движется в третьем измерении, которое пересекает этот двумерный мир. Для стороннего наблюдателя, это движение выразится в смене двумерных проекций объекта на плоскости, как у брокколи в аппарате МРТ:

 

original_mri3__econet_ru.gif

 

Но для обитателя нашей Флатландии такая картинка непостижима! Он не в состоянии даже представить её себе. Для него каждая из двумерных проекций будет видеться одномерным отрезком с загадочно переменчивой длиной, возникающим в непредсказуемом месте и также непредсказуемо исчезающим. Попытки просчитать длину и место возникновения таких объектов с помощью законов физики двумерного пространства, обречены на провал.

Мы, обитатели трёхмерного мира, видим всё двумерным. Только перемещение предмета в пространстве позволяет нам почувствовать его объём. Любой многомерный объект мы увидим также двумерным, но он будет удивительным образом меняться в зависимости от нашего с ним взаиморасположения или времени.

С этой точки зрения интересно думать, например, про гравитацию. Все, наверное, видели, подобные картинки:

original_92a916e2eeddb5230d3a02a8eec36218__econet_ru.png

 

На них принято изображать, как гравитация искривляет пространство-время. Искривляет... куда? Точно ни в одно из знакомых нам измерений. А квантовое туннелирование, то есть, способность частицы исчезать в одном месте и появляться совсем в другом, причём за препятствием, сквозь которое в наших реалиях она не смогла бы проникнуть, не проделав в нём дыру? А чёрные дыры? А что, если все эти и другие загадки современной науки объясняются тем, что геометрия пространства совсем не такая, какой мы привыкли её воспринимать?

Тикают часики

Время добавляет к нашей Вселенной ещё одну координату. Для того, чтобы вечеринка состоялась, нужно знать не только в каком баре она произойдёт, но и точное время этого события.

Исходя из нашего восприятия, время — это не столько прямая, как луч. То есть, у него есть отправная точка, а движение осуществляется только в одном направлении — из прошлого в будущее. Причём реально только настоящее. Ни прошлое, ни будущее не существуют, как не существуют завтраки и ужины с точки зрения офисного клерка в обеденный перерыв.

Но теория относительности с этим не согласна. С её точки зрения, время — это полноценное измерение. Все события, которые существовали, существуют и будут существовать, одинаково реальны, как реален морской пляж, независимо от того, где именно мечты о шуме прибоя захватили нас врасплох. Наше восприятие — это всего лишь что-то вроде прожектора, который освещает на прямой времени какой-то отрезок. Человечество в его четвёртом измерении выглядит приблизительно так:

 

original_9850dbebd740066a6f458beda0a40b0b__econet_ru.png

 

Но мы видим только проекцию, срез этого измерения в каждый отдельный момент времени. Да-да, как брокколи в аппарате МРТ.

До сих пор все теории работали с большим количеством пространственных измерений, а временное всегда было единственным. Но почему пространство допускает появление множественных размерностей для пространства, но время только одно? Пока учёные не смогут ответить на этот вопрос, гипотеза о двух или более временных пространствах будет казаться очень привлекательной всем философам и фантастам. Да и физикам, чего уж там. Скажем, американский астрофизик Ицхак Барс корнем всех бед с Теорией Всего видит как раз упущенное из виду второе временное измерение. В качестве умственного упражнения, попробуем представить себе мир с двумя временами.

Каждое измерение существует отдельно. Это выражается в том, что если мы меняем координаты объекта в одной размерности, координаты в других могут оставаться неизменными. Так, если вы движетесь по одной временной оси, которая пересекает другую под прямым углом, то в точке пересечения время вокруг остановится. На практике это будет выглядеть приблизительно так:

original_45be9da08a7092c12efc78cf84df52f5__econet_ru.jpg

 

Всё, что Нео нужно было сделать — это разместить свою одномерную временную ось перпендикулярно временной оси пуль. Сущий пустяк, согласитесь. На самом деле всё намного сложнее.

Точное время во вселенной с двумя временными измерениями будет определяться двумя значениями. Слабо представить себе двумерное событие? То есть, такое, которое протяжённо одновременно по двум временным осям? Вполне вероятно, что в таком мире потребуются специалисты по составлению карты времени, как картографы составляют карты двухмерной поверхности земного шара.

Что ещё отличает двумерное пространство от одномерного? Возможность обходить препятствие, например. Это уже совсем за границами нашего разума. Житель одномерного мира не может представить себе как это — завернуть за угол. Да и что это такое — угол во времени? Кроме того, в двумерном пространстве можно путешествовать вперёд, назад, да хоть по диагонали. Я без понятия как это — пройти через время по диагонали. Я уж не говорю о том, что время лежит в основе многих физических законов, и как изменится физика Вселенной с появлением ещё одного временного измерения, невозможно представить. Но размышлять об этом так увлекательно!

Очень большая энциклопедия

Другие измерения ещё не открыты, и существуют только в математических моделях. Но можно попробовать представить их так.

Как мы выяснили раньше, мы видим трёхмерную проекцию четвёртого (временного) измерения Вселенной. Другими словами, каждый момент существования нашего мира — это точка (аналогично нулевому измерению) на отрезке времени от Большого взрыва до Конца Света.

Те из вас, кто читал про перемещения во времени, знают какую важную роль в них играет искривление пространственно-временного континуума. Вот это и есть пятое измерение — именно в нём «сгибается» четырёхмерное пространство-время, чтобы сблизить две какие-то точки на этой прямой. Без этого путешествие между этими точками было бы слишком длительным, или вообще невозможным. Грубо говоря, пятое измерение аналогично второму — оно перемещает «одномерную» линию пространства-времени в «двумерную» плоскость со всеми вытекающими в виде возможности завернуть за угол.

Наши особо философско-настроенные читатели чуть ранее, наверное, задумались о возможности свободной воли в условиях, где будущее уже существует, но пока ещё не известно. Наука на этот вопрос отвечает так: вероятности. Будущее — это не палка, а целый веник из возможных вариантов развития событий. Какой из них осуществится — узнаем когда доберёмся.

Каждая из вероятностей существует в виде «одномерного» отрезка на «плоскости» пятого измерения. Как быстрее всего перескочить из одного отрезка на другой? Правильно — согнуть эту плоскость, как лист бумаги. Куда согнуть? И снова правильно — в шестом измерении, которое придаёт всей этой сложной структуре «объём». И, таким образом, делает её, подобно трёхмерному пространству, «законченной», новой точкой.

Седьмое измерение — это новая прямая, которая состоит из шестимерных «точек». Что представляет собой какая-либо другая точка на этой прямой? Весь бесконечный набор вариантов развития событий в другой вселенной, образованной не в результате Большого Взрыва, а в других условиях, и действующей по другим законам. То есть, седьмое измерение — это бусы из параллельных миров. Восьмое измерение собирает эти «прямые» в одну «плоскость». А девятое можно сравнить с книгой, которая уместила в себя все «листы» восьмого измерения. Это совокупность всех историй всех вселенных со всеми законами физики и всеми начальными условиями. Снова точка.

Тут мы упираемся в предел. Чтобы представить себе десятое измерение, нам нужна прямая. А какая может быть другая точка на этой прямой, если девятое измерение уже покрывает всё, что только можно себе представить, и даже то, что и представить невозможно? Получается, девятое измерение — это не очередная отправная точка, а финальная — для нашей фантазии, во всяком случае.

Теория струн утверждает, что именно в десятом измерении совершают свои колебания струны — базовые частицы, из которых состоит всё. Если десятое измерение содержит себе все вселенные и все возможности, то струны существуют везде и всё время. В смысле, каждая струна существует и в нашей вселенной, и любой другой. В любой момент времени. Сразу. Круто, да?  

опубликовано econet.ru

 

Вау. Они заставляют влюбиться в эту тему. Спасибо.

Ссылка на комментарий
Поделиться на другие сайты

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Гость
Ответить в этой теме...

×   Вставлено с форматированием.   Вставить как обычный текст

  Разрешено использовать не более 75 смайлов.

×   Ваша ссылка была автоматически встроена.   Отображать как обычную ссылку

×   Ваш предыдущий контент был восстановлен.   Очистить редактор

×   Вы не можете вставлять изображения напрямую. Загружайте или вставляйте изображения по ссылке.

  • Последние посетители   0 пользователей онлайн

    • Ни одного зарегистрированного пользователя не просматривает данную страницу
×
×
  • Создать...